Caveolin-1 regulation of dynamin-dependent, raft-mediated endocytosis of cholera toxin–B sub-unit occurs independently of caveolae
نویسندگان
چکیده
Ganglioside GM1-bound cholera toxin-B sub-unit (CT-b) enters the cell via clathrin-coated pits and dynamin-independent non-caveolar raft-dependent endocytosis. Caveolin-1 (Cav1), associated with caveolae formation, is a negative regulator of non-caveolar raft-dependent endocytosis. In mammary epithelial tumour cells deficient for Mgat5, Cav1 is stably expressed at levels below the threshold for caveolae formation, forming stable oligomerized Cav1 microdomains or scaffolds that were shown to suppress EGFR signalling and reduce the plasma membrane diffusion rate of both EGFR and CT-b. Below threshold levels of Cav1 also inhibit the dynamin-dependent raft-mediated endocytosis of CT-b to the Golgi indicating that Cav1-negative regulation of raft-dependent endocytosis is caveolae independent. Inhibition of CT-b internalization does not require Cav1 phosphorylation but does require an intact Cav1 scaffolding domain. By flow cytometry, both over-expression of Cav1 and the dynamin K44A mutant block CT-b internalization from the plasma membrane defining a dynamin-dependent raft pathway for CT-b endocytosis in these cells. However, only minimal co-localization between CT-b and Cav1 is observed. These results suggest that Cav1 regulates raft-dependent internalization of CT-b indirectly via a mechanism that requires the Cav1 scaffolding domain and the formation of oligomerized Cav1 microdomains but not caveolae.
منابع مشابه
G Activation of Src Induces Caveolae-mediated Endocytosis in Endothelial Cells*
Caveolae-mediated endocytosis in endothelial cells is stimulated by the binding of albumin to gp60, a specific albumin-binding protein localized in caveolae. The activation of gp60 induces its cell surface clustering and association with caveolin-1, the caveolar-scaffolding protein. This interaction leads to Gi-induced Src kinase activation, which in turn signals dynamin2-mediated fission and d...
متن کاملRegulation of raft-dependent endocytosis
Raft-dependent endocytosis is in large part defined as the cholesterol-sensitive, clathrin-independent internalization of ligands and receptors from the plasma membrane. It encompasses the endocytosis of caveolae, smooth plasmalemmal vesicles that form a subdomain of cholesterol and sphingolipid-rich lipid rafts and that are enriched for caveolin-1. While sharing common mechanisms, like cholest...
متن کاملGanglioside GM1 levels are a determinant of the extent of caveolae/raft-dependent endocytosis of cholera toxin to the Golgi apparatus.
Cholera toxin is associated with caveolae and raft domains in various cell types and previous studies have shown that cholera toxin can be internalized by caveolae/raft-dependent endocytosis as well as by other pathways. We undertook the study of cholera toxin endocytosis in CaCo-2 and HeLa cells. CaCo-2 cells do not express detectable levels of caveolin and, relative to HeLa cells, also presen...
متن کاملDistinct caveolae-mediated endocytic pathways target the Golgi apparatus and the endoplasmic reticulum.
Internalization of autocrine motility factor (AMF) into the endoplasmic reticulum is sensitive to the cholesterol-extracting reagent methyl-beta-cyclodextrin, inhibited by the dynamin-1 K44A mutant and negatively regulated by caveolin-1. Thus, AMF internalization requires a caveolae-mediated endocytic pathway. Similarly, we show here that endocytosis of cholera toxin (CTX) in NIH-3T3 fibroblast...
متن کاملLipid raft–dependent plasma membrane repair interferes with the activation of B lymphocytes
Cells rapidly repair plasma membrane (PM) damage by a process requiring Ca(2+)-dependent lysosome exocytosis. Acid sphingomyelinase (ASM) released from lysosomes induces endocytosis of injured membrane through caveolae, membrane invaginations from lipid rafts. How B lymphocytes, lacking any known form of caveolin, repair membrane injury is unknown. Here we show that B lymphocytes repair PM woun...
متن کامل